26 research outputs found

    Application of conducting polymer electrodes in cell impedance sensing

    Get PDF
    Research in label free methods for biological analysis has brought interesting developments. Cell impedance spectroscopy has been one of the promising outcomes. It allows the measurement of cell proliferation and motility whereby it is possible to study wound healing and cell behavior in vitro. This thesis presents the progress towards an 8-well impedance measurement setup that uses conducting polymers as electrode material in cell impedance spectroscopy. A step by step fabrication of devices with PEDOT:PSS electrodes is described along with the hardware and software, developed and integrated, to perform impedance measurements of cell cultures. Electrochemical analysis was performed for PEDOT:PSS and Au electrodes to compare the two materials for use in cell impedance spectroscopy. PEDOT:PSS electrodes showed lower interfacial impedance and reach electrochemical equilibrium faster than Au electrodes. It was observed through electrochemical impedance analysis that the lower interfacial impedance is due to the low charge transfer resistance of PEDOT:PSS. MDCK cell proliferation experiments were performed using both types of electrode materials to provide a comparative study. The impedance measurement results showed differences between the two materials that led to a different kind of electrical model for the changes measured due to cell proliferation. Curve fitting results to the electrical model provided an understanding of the cell-substrate interactions and the capabilities of cell impedance spectroscopy. The application of cell impedance spectroscopy to human embryonic stem cells was also explored. The impedance changes of pluripotent stem cells during differentiation to trophoblasts were measured and analyzed. Analysis of changes to the phase values in the frequency spectrum show that by measuring the frequency where the phase is minimum, it is possible to distinguish between the two cell types. It provides a new method of using cell impedance spectroscopy to study stem cells behavior in real time and help researchers in the maintaining of stem cell cultures in the lab. Another new application of cell impedance spectroscopy to determine cell types based on the flexibility of the cytoskeleton was also explored. Some preliminary data is presented in the last chapter.

    Symmetry reduction and shape effects in concave chiral plasmonic structures

    Get PDF
    Chiral metamaterials have shown a number of interesting properties which result from the interaction of the chiral near-field they produce with light and matter. We investigate the influence of structural imperfections on the plasmonic properties of a chiral gold “gammadion”, using electron energy loss spectroscopy to directly inform simulations of realistic, imperfect structures. Unlike structures of simple convex geometry, the lowest energy modes of the ideal concave gammadion have a quadrupole and dipole character, with the mode energies determined by the nature of electrostatic coupling between the gammadion arms. These modes are strongly affected by structural imperfections that are inherent to the material properties and lithographic patterning. Even subwavelength-scale imperfections reduce the symmetry, lift mode degeneracies convert dark modes into bright ones and significantly alter the mode energy, its near-field strength, and chirality. Such effects will be common to a number of multitipped concave structures currently being investigated for the chiral fields they support

    Roles of superchirality and interference in chiral plasmonic biodetection

    Get PDF
    Chiral plasmonic nanostructures enable ≤pg detection and characterization of biomaterials. The sensing capabilities are associated with the chiral asymmetry of the near fields, which locally can be greater than equivalent circularly polarized light, a property referred to as superchirality. However, sensing abilities do not simply scale with the magnitude of superchirality. We show that chiral molecular sensing is correlated to the thickness of a nanostructure. This observation is reconciled with a previously unconsidered interference mechanism for the sensing phenomenon. It involves the “dissipation” of optical chirality into chiral material currents through the interference of fields generated by two spatially separated chiral modes. The presence of a chiral dielectric causes an asymmetric change in the phase difference, resulting in asymmetric changes to chiroptical properties. Thus, designing a chiral plasmonic sensor requires engineering a substrate that can sustain both superchiral fields and an interference effect

    Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures

    Get PDF
    The refractive index sensitivity of plasmonic fields has been exploited for over 20 years in analytical technologies. While this sensitivity can be used to achieve attomole detection levels, they are in essence binary measurements that sense the presence/absence of a predetermined analyte. Using plasmonic fields, not to sense effective refractive indices but to provide more “granular” information about the structural characteristics of a medium, provides a more information rich output, which affords opportunities to create new powerful and flexible sensing technologies not limited by the need to synthesize chemical recognition elements. Here we report a new plasmonic phenomenon that is sensitive to the biomacromolecular structure without relying on measuring effective refractive indices. Chiral biomaterials mediate the hybridization of electric and magnetic modes of a chiral solid-inverse plasmonic structure, resulting in a measurable change in both reflectivity and chiroptical properties. The phenomenon originates from the electric-dipole–magnetic-dipole response of the biomaterial and is hence sensitive to biomacromolecular secondary structure providing unique fingerprints of α-helical, β-sheet, and disordered motifs. The phenomenon can be observed for subchiral plasmonic fields (i.e., fields with a lower chiral asymmetry than circularly polarized light) hence lifting constraints to engineer structures that produce fields with enhanced chirality, thus providing greater flexibility in nanostructure design. To demonstrate the efficacy of the phenomenon, we have detected and characterized picogram quantities of simple model helical biopolymers and more complex real proteins

    Attomole enantiomeric discrimination of small molecules using an achiral SERS reporter and chiral plasmonics

    Full text link
    Biologically important molecules span a size range from very large biomacromolecules, such as proteins to small metabolite molecules. Consequently, spectroscopic techniques which can detect and characterize the structure of inherently chiral biomolecules over this range of scale at the femtomole level are necessary to develop novel biosensing and diagnostic technologies. Nanophotonic platforms uniquely enable chirally sensitive structural characterisation of biomacromolecules at this ultrasensitive level. However, they are less successful at achieving the same level of sensitivity for small chiral molecules, with less than nanomole typical. This poorer performance can be attributed to the optical response of the platform being sensitive to a much larger volume of the near field than is occupied by the small molecule. Here we show that by combining chiral plasmonic metasurfaces with Raman reporters, which can detect changes in electromagnetic environment at molecular dimensions, chiral discrimination can be achieved for attomole quantities of a small molecule, the amino acid cysteine. The signal-to-noise, and hence ultimate sensitivity, of the measurement can be further improved by combining the metasurfaces with gold achiral nanoparticles. This indirect enantiomeric detection is 9 orders of magnitude more sensitive than strategies relying on monitoring the Raman response of target chiral molecules directly. Given the generic nature of the phenomenon,this study provides a framework for developing novel technologies for detecting a broad spectrum of small biomolecules, which would be useful tools in the field of metabolomics

    Chiral plasmonic fields probe structural order of biointerfaces

    Get PDF
    The structural order of biopolymers, such as proteins, at interfaces defines the physical and chemical interactions of biological systems with their surroundings and is hence a critical parameter in a range of biological problems. Known spectroscopic methods for routine rapid monitoring of structural order in biolayers are generally only applied to model single-component systems that possess a spectral fingerprint which is highly sensitive to orientation. This spectroscopic behavior is not a generic property and may require the addition of a label. Importantly, such techniques cannot readily be applied to real multicomponent biolayers, have ill-defined or unknown compositions, and have complex spectroscopic signatures with many overlapping bands. Here, we demonstrate the sensitivity of plasmonic fields with enhanced chirality, a property referred to as superchirality, to global orientational order within both simple model and “real” complex protein layers. The sensitivity to structural order is derived from the capability of superchiral fields to detect the anisotropic nature of electric dipole–magnetic dipole response of the layer; this is validated by numerical simulations. As a model study, the evolution of orientational order with increasing surface density in layers of the antibody immunoglobulin G was monitored. As an exemplar of greater complexity, superchiral fields are demonstrated, without knowledge of exact composition, to be able to monitor how qualitative changes in composition alter the structural order of protein layers formed from blood serum, thereby establishing the efficacy of the phenomenon as a tool for studying complex biological interfaces

    Detecting antibody–antigen interactions with chiral plasmons: factors influencing chiral plasmonic sensing

    Get PDF
    Chiral near fields possessing enhanced asymmetry (superchirality), created by the interaction of light with (chiral) nanostructures, potentially provide a route to novel sensing and metrology technologies for biophysical applications. However, the mechanisms by which these near fields lead to the detection of chiral media is still poorly understood. Using a combination of numerical modeling and experimental measurements on an antibody–antigen exemplar system, important factors that influence the efficacy of chiral sensing are illustrated. It is demonstrated that localized and lattice chiral resonances display enantiomeric sensitivity. However, only the localized resonances show a strong dependency on the structure of the chiral media detected. This can be attributed to the ability of birefringent chiral layers to strongly modify the properties of near fields by acting as a sink/source of optical chirality, and hence alter inductive coupling between nanostructure elements. In addition, it is highlighted that surface morphology/defects may amplify sensing capabilities of localized chiral plasmonic modes by mediating inductive coupling

    Controlling the symmetry of inorganic ionic nanofilms with optical chirality

    Get PDF
    Manipulating symmetry environments of metal ions to control functional properties is a fundamental concept of chemistry. For example, lattice strain enables control of symmetry in solids through a change in the nuclear positions surrounding a metal centre. Light–matter interactions can also induce strain but providing dynamic symmetry control is restricted to specific materials under intense laser illumination. Here, we show how effective chemical symmetry can be tuned by creating a symmetry-breaking rotational bulk polarisation in the electronic charge distribution surrounding a metal centre, which we term a meta-crystal field. The effect arises from an interface-mediated transfer of optical spin from a chiral light beam to produce an electronic torque that replicates the effect of strain created by high pressures. Since the phenomenon does not rely on a physical rearrangement of nuclear positions, material constraints are lifted, thus providing a generic and fully reversible method of manipulating effective symmetry in solids

    Chiral Metafilms and Surface Enhanced Raman Scattering For Enantiomeric Discrimination of Helicoid Nanoparticles

    Get PDF
    Chiral nanophotonic platforms provide a means of creating near fields with both enhanced asymmetric properties and intensities. They can be exploited for optical measurements that allow enantiomeric discrimination at detection levels greater than 6 orders of magnitude than is achieved with conventional chirally sensitive spectroscopic methods based on circularly polarized light. The optimal approach for exploiting nanophotonic platforms for chiral detection would be to use spectroscopic methods that provide a local probe of changes in the near field environment induced by the presence of chiral species. Here we show that surface enhanced Raman spectroscopy (SERS) is such a local probe of the near field environment. We have used it to achieve enantiomeric discrimination of chiral helicoid nanoparticles deposited on left and right-handed enantiomorphs of a chiral metafilm. Hotter electromagnetic hotspots are created for matched combinations of helicoid and metafilms (left-left and right-right), while mismatched combinations leads to significantly cooler electromagnetic hotspots. This large enantiomeric dependency on hotspot intensity is readily detected using SERS with the aid of an achiral Raman reporter molecule. In effect we have used SERS to distinguish between the different EM environments of the plasmonic diastereomers produced by mixing chiral nanoparticles and metafilms. The work demonstrates that by combining chiral nanophotonic platforms with established SERS strategies new avenues in ultrasensitive chiral detection can be opened

    Near-field probing of optical superchirality with plasmonic circularly polarized luminescence for enhanced bio-detection

    Get PDF
    Nanophotonic platforms in theory uniquely enable < femtomoles of chiral biological and pharmaceutical molecules to be detected, through the highly localized changes in the chiral asymmetries of the near fields that they induce. However, current chiral nanophotonic based strategies are intrinsically limited because they rely on far field optical measurements that are sensitive to a much larger near field volume, than that influenced by the chiral molecules. Consequently, they depend on detecting small changes in far field optical response restricting detection sensitivities. Here, we exploit an intriguing phenomenon, plasmonic circularly polarized luminescence (PCPL), which is an incisive local probe of near field chirality. This allows the chiral detection of monolayer quantities of a de novo designed peptide, which is not achieved with a far field response. Our work demonstrates that by leveraging the capabilities of nanophotonic platforms with the near field sensitivity of PCPL, optimal biomolecular detection performance can be achieved, opening new avenues for nanometrology
    corecore